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ALLOCATION RULES FOR SBQUENTIAL CLINICAL TRIALS
D. Siegmund
Stanford University
Stanford, CA 94305/USA

Consider the following simplified model of a clincial trial. Patients arrive se-
quentially at a treatment center and receive one of two treatments: A or B. The
(immediate response of the 1“ patient to receive treatment A s Xy 1i=1,2,...,
that of the jﬂ‘ patient to receive treatment B 1is yj. J=1,2,... . At any stage
_ of the process, having observed RysecosXys FyseoerYs the experimenter can stop the
experiment and declare (1) A is the better treatment, (2) B 1s better, or (3) there
is essentially no difference between A and B; or he can continued the experiment
and assign the next patient to treatment A or B according to some allocation rule.
In this paper we shall be primarily interested in the experimenter's allocation rule,
which should be selected insofar as possible (i) to permit valid inferences upon ter-
mination of the experiment and (ii) to minimize {n some sense the muwber of patients
receiving the inferior treatment during the course of the experiment.

The specific mathematical framework developed bslow to discuss this problem was
introduced by Flehinger, Louis, Robbins, and Singer (1972) and developed by Robbins and
Siegmund (1973), Louis (1975), and Hayre (1979). To a considerable extent the present
paper is s review and exposition of these ideas. An interesting and somevhat differemt
spproach has been receatly developed by Bather (1980, 1981), and it would be interest-
ing to make a systematic comparison of Bather's approach with that outlined below.

We assune that XiseoosXgeess aTE independent n(ul.l) and FysoresYyseee are
independent n(uz.l) random variables, and that the x's and y's are independent.
Por an indication how the results given here can bde extended via large sample approxi-
mations to non-normal data, see Robbina (1974). Let § = By =Wy and to be specific
sssume that the better treatment is that yielding the larger mean response. Hemce to
ssy that treatment A 1is superior to say that ¢ > 0, ete.

Let ;n -t t:-l. Xyo ;u a7l 2} 17y and an " ;%; (;i'; ). b.vtn:
observed XyseoorXy. and FyoeresVge the natural estimator of § 1s -.u"--’n'
Since problems of statistical inference about ¢ are imvariant under changes ia lo-
cation of the data, it is ressonable to consider iavariant procedures, i.e. those based
on the process '-.n' m,n > 1 or equivaleatly on u, - x, =%, 1=1,2,... and
v’ - ’j"l’ § = 1,2,... . Our first result is a "separation” theorem, which says that
1n a certain sense the problem of statistical inference about & cam be separsted from
the problem of allocation, provided we restrict ourselves to iavariaat precedures (cf.
Lemna 1 of Robbins and Siegmuand, 1973).

It is convenieat to introdece the following motatiem:

- .(“o 1<m3 v, J<0) ,




W(t) = Brownisn motion with drife § ,
- Fyle) ~ 8QN(s), s < 0) ,
t - nl(g-l-n) .- ' i

Proposition 1. PFor arbitrary a,n > 1

£y 0 Tl ) = SV, ) =WCE, DaCe,

‘(.I.ﬂl-.l,nlal.l) ..- ‘('“I.lﬂ) -"(tl.l”:'“., » .
Proof. Simple alg(bu yfddt
': , ' ' ' a =
Q) 2tln " fan " nx.ul (wintl) - n(f v + i: x,)/ (ata) (wintl) .

It is easy to see that the two terms on the right hand side of (1) are each uncorre-
lated with U, 1<m and v’. J £ n. Hence by properties of the normal distribution

Satl,n " *a,n given 3." is normally distributed with expectation

null(-mx) - n(um1 + -uz)l(-h) (mintl)

- o286/ (uro) (wtut1) = (e, | - € )

and variance

(o/ (wtut1)]2 + 02/ (utn) (mnt1)? -t .

-0-1 o m,n

But this is precisely the conditiomal distribution of W(t l.n) - U(t...) given
3'(t‘. ‘). ‘A similar argument applies to =2 Ipeey < S

Corollary 1. TFor any invariaat allocatien rule the processes

{I-’. - ma /(wtn), 3-..}

' 2
((ay o = = /(wa))? - wlmim), 3, )

are martingales.
umm:mmummuxumem-y-no—mmm

on the process s, or equivelently eu the w's sl v's, mm.‘m-

-npuc"muunuudn l(c.") uummdpm




(s, oo ®/(utn)} and (v(q. )e }mmuujomaumm l-ut!
0< tg <= various allocation nlu yield sequences of “sbesrvations” U(t ).
o<: ol tp Mdit!orulyhch(uﬂu)umuﬁuhthkmnﬁu
m Because the Brownian patus are continucus snd the increments t_-u.- c.'-
or ¢ - atl " € (0,1), the exsct choice of allocation rule has a limited effect
on t.ho joint du:ubgun of the observed data provided t-'. -+ gf as mén+e, Ia
particular, if the process {ll(t 2 & a,n is observed until it first leaves some
miuvithlmumbmryuﬂnomc time plane, the point at which the
process leaves the region has a distribution which is approximately independent of the
allocation ruls.

For our present purposes this has the following consequences. Assume temporarily
that the allocation rule does not depend on the data — for example that cbservations
are taken in pn:l.x;t (xi.yi). i{i=1,2,... and v, *x, ~y;. Assume also that in this
context we favor a particular proceudre for making inferences sbout § = lvi. Yor
example, to test los §=0 wa stop sampling at uin(T,2v), wvhere

n
T = inf{n: |2 w,| 2 2b}

and Vv is some positive 1n:e;cr. If T<2v and !: », > 2b wve reject lo and say
that §>0; 41f T < 2v und£v<-2b \nujcctﬂolnduythct §<0; 1f
T > 2v we accept Ho as being npproxiucel.y true. The power function of this test
of Hy: 8 = 0 against Hy: §$0 1s ra{'r < 2v} and the expected sample size is
36('1‘ A 2v). For any 1nvariant allocation rule there exists the analogous procedure:
stop sampling when mn/(m+n) > v or at

(,K) = n\f{(-.n)zlzn’nl >0} ,
vhichever occurs first, and reject Hy: 8§ =0 if and only if H/(E+®) <v. It

follows from the remarks following Proposition 1 that the power function
P AN/ (I+H) < v} of this fest satisfies '

(2) ' P KR/ (H+H) < v} 3 Pilr <20},
and
) (R ReI] AV E BT A

s

Bence we have obtained s sequentisl test whose pewer functiem f£s to a considerable

extent independent ‘of the allecation rule used, sad we are fres te comsider different
allocation rules is as attempt to minimise the nesber of cbservations takem ou the
iaferior treatment. ’
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Note that although we proceed with the ‘discussion for one perticular sequamtial
test, ve could equally well consider others, e.g. a repeated significance mt."

Before we consider in detail the choice of sllocation rule, it is helpful to ob~ i
serve the following limits imposed by (3). Let ¥ and ‘N denote the number of x g
and y observations respectively vhen sempling stops, so MN/QL+W) 3 (illl/(R+#)] A v. ;
Sirce win(M,W) > MX/(M+N). with equality if and only if max(M,N) = «», it follows i
from (3) that ' ' '

) o nin(BLEN) > 3R, T A2V

and a necessary condition for approximate equality, in (4) is that .m(l‘l.lal) be !
extremely large. Since x(1-x) < 1/4 with equality if and only if x = 1/2, by (3)

®» Eg(M+N) 2 4R (N/QM+K)} & 2B,(T A )

and there is equality in (5) if and only 1€ M and N are approximately equal with
probability one. From (4) and (5) we conclude that the expected mumber of observations
on the inferior treatment is at least 1/2 as large as pairvise allocation requires;
and any deviation from pairwise allocation results in some increase in the total ex-
pected sample size.

The t...owing argument for choosing an allocation rule is due to Hayre (1979).
Suppose that when & is the true difference in mean response, the cost to the experi-
menter of an x observation is g(§) wvhile that of a y observation is h(8). EHence
the total expected cost of sampling is

(6) s(G)IG(u) + n(c)té(x) .

The overall risk function is the sum of (6) and the risk associated with making a

wrong terminal decision. But since the power function of our test is essentiully in-
dependent of the allocation rule used, we can ignore the termimal decisiom part of the
risk function and attempt to minimize (6). B8ince

1) M= DO/QI+N))(L+WE) = [MS/M+MIA+Q)
say, and
(8) K= D/aeml+Qh

we can rewrite (6) as

9 [+ g)B,U0/ 00+ M) + B8/ LM ig2+ W1}




Noreover, by (3) the first term in (9) is essentislly indepsodent of the allocation
rule, 80 we attempt to minimise cthe second. Calculus shows thet for every @Q

80+ M7 > 26012 vieh equality 1f and only tf

(10) Q= awpt/?

Hence & lower bound to (;) is

a1 a2 4 g1/%2 B D0/ Ceem)

vhich could bo. achieved only if we could allocate observations so that

12) Xer (g1 «1 .

Since & s unknown this is impossible, but as an approximation we consider the allo-
cation rule vhich takes the next observation from the y population if and only if

a3 a/m < [8G -7 )M -7 N2 .

To the extent that this allocation rule behaves as we hope it will, i.e, to the extent
that (12) is approximately true, by (7) and (8) we have the approximations

(14) z,00 5 g/ +mI+ a/pt/l)

as) B0 = E i/ ML mi/)
and the risk (6) is approximately the lower bound (11).

A numerical example illustrating these results is given in Table 1. The functioms
g and h are of the form

1 1t &§>0
Q16) g(8) = h(-§) =
1+4/8] 1 &<o0 .

This choice has the interpretation that the basic (experimeatsl) cost of su cbssrvatiom
is unity, and the additional (ethical) cost of assigning the iaferior trastmeat {s
stoportional to |8]. For comparison the first rov is each cell of Table 1 is for
yairvise allocation, and the computations of pover amd oxpected sample siszs wse the
spproximations suggested by Siegmund (1979) and showu to be very accurate. The second
row of esch cell gives results for the sampling ruls (13) with g and b defined by
(16). The first eatry is the outcome of a 400 repetition Neate Carlo experissst, and




the parenthetical entry is the theoretical approximation given by (15), (14), or (11).
The Monte Carlo results lend support to our iaformsl interprstation of Proposition 1
to the effect that the power and IGIIIIOHI)I ars approuimately iadependent of the
allocation rule, and they indicate that the approximations (15), (14), and (11) sre
quite good. Hayre (1979) reached the ssme conclusions for s different stopping rule
and value of d in,(16). NMost iwportantly the results shov a fairly substantial de~
cresse in risk of about 15-30% vhen the allocation rule (13) is used.

TABLE 1
i
First row in each cell is for pairwise allocation; second row is for allo- j
cation rule (13) with h and g given by (16) with d = 20; in all cases j
b = 10.8, V = 25; theoretical calculations are in parentheses; others are ’
Monte Carlo
8 Power Eg ($)) Bg o) Y44 a(llll sl ) Risk
1.13 (1.00) (19.9) (19.9) (19.9) (490) ~
1.00 12.3 (12.0)  53.7 (58.3) 20.0 343 (341)
.85  ( .986) (26.4) (26.4) (26.4) (302)
.995 15.9 (16.9)  62.7 (59.7) 25.2 349 (363)
.57 ¢ .788) (36.8) (36.8) (36.8) (493)
.793 26.0 (23.6)  77.5 (83.2) 36.3 375 (376)
.28 ( .279) (46.7) (46.7) (46.7) (355)
.298 36.4 (32.5)  77.4 (83.5) 46.6 318 (298)
00 ( .050) (49.5) (49.5) (49.5)
.048 54.1 $6.3

49.6

The reduction in risk of 15-30X compared to pairwise sampling in Tadble 1 mskes
the allocation rule (13) seem attractive; but it is not large enocugh to overvhelm cer—
tain dissdvantages without further investigation. (By way of comparisen a fixed semple
sise with paired observations requires &% pairs to achieve shout the same power fuac-
tion as in Table 1. This leads to risks of 1181 and 912 for & = 1.13 end .83, so
sequentisl sampling with pairwise allocation lesds te & refuctiom ia risk for large
|8] of sbout 50% compared to a fixed sample.) The disadvemtages iselude (1) the fext
that the allocatiem rule (13) is non-randemised, (11) questissable performsnce whea
the patient pepulation is stratified, (111) difficulsy in inmplensntation if ohe dmba
ave examined eccastomally, but not onttawsisly, and (iv) geestiowsbie parfovemmme fer
survival data, vilere trestment aseiguuents wset be unde for uev patiests dafvon dane
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become available on old omes. Accommodating these difficulties lasds to some deterio-
4 ration in the performance of adaptive allocation rules, which may lead to questioning

; their desirability at all. Here we. discuss (1) and (ii) vy mesns of a Monte Carlo

{ The advantages of randomization ia clinical trials has been discussed at great
length-primarily in an effort to eliminate selection bias (e.g. Blackwell and Hodges,
1957), but secondarily to provide the possibility of a permutation test of the hypoth-
esis of no treatment effect. It is easy to define a randomized version of (13) to cut
down on selection bias. For exsmple, we might select treatment B or trestment A vith
relative probabilities given by the right hand side of (13). More precisely, let

1/2

Ap,n * (8GL-FIMG 7))

o b VA AL Ot Dl i B R S b

and take the next observation from the y population if and only if

an LR 3 SV SN I

B

i vhere U,,U,,... 1s an auxiliary sequence of independent uniform random variables which
we generate. Asymptotically this rule generates the appropriate relative frequencies
J, of treatment selections. A more sophisticated version would be one which takes sccount
[ of how far n/m 1is from the desired ratio of Xn,n in selecting the next treatment.
For g and h given by (16) with d = 20, and for § in the range [-1,1], the
right hand side of (17) is in the range (.1,.9) with high probability, so there {s
always some indeterminacy in the next trsatment assignment. '

TABLE 2
4 i Randomized Allocation (17)
b=10.8, v=25, g and h given by (16) with d = 20

6 Power IG(N) la(n) 2E [MN/(N)] Risk
113 1.00  12.7  50.3 19.5 350 %
.85 .95 18.2  60.3 26.8 368

57 .93 266 72.4 37.0 402

28 315 38.8  72.0 46.0 328

Table 2 gives the outcome of a 400 replication Monte Carlo experiment thsing the
randomised sllocation rule (17). By comparison with Table 1 we see that randomisation
bas led consistently to an increase im risk, but one so slight that the benefits of
randomizsation seem tb outweigh the lisbilicy.
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; The question of stratification is -or.. co-pli.catcd because the results may depend
on the number and relative sizes of different strata. The difficulties are most acute
; wvith a large number of small stratz, where one usually wants to guarantee a certain
amount of balance in the sample from each stratum, so that a stratum could be analyzed
by itself if the model relating different strata seems to be inappropriate.
To be specific suppose there are r strata and for k= 1,2,...,r, in stratum
k the response of.the 1“‘ patient on treatmgnt A is Xy vhich is distributed
N(u +8,1), and that of the 3*" patient on treatment B is Y,y» distributed nQw,1).
After m, assigoments of treatment A and n of treatment B in the kth stratum, the
maximum likelihood estimstor of the treatment effect & 1is (in the obvious notation)

oy - -
I AL g 5 )
=1 MU kel Tkom
. o b -8 e oan f
k=1 "t

Let =z(m,n) denote the numerator and t(m,n) the denominator of 3(_-_,2).

It is easy to obtain a result analogous to Proposition 1, and hence to conclude
that z(m,n) behaves like Brownian motion with drift & in the time scale of t(am,n)
provided that an invariant treatment allocation rule is used. Here invariant means

that the choice of the next treatment assigmment may depend only on the vector of

differences (;:1 »X_ _ =y_ _ ). Hence as above we can test & = 0 with a {

"l-yl’nl.-.. r"! Ty
test whose power function is essentially independent of the (invariant) allocation rule
used, and we can turn our attentiom to the cost of sampling.

In analogy with (6) suppose the expected cost of sampling is given by

(9) BOIDY + RO,

where }lk (Nk) is the number of x's (y's) observed in the k"h stratum, k=1,2,...,r.

The argument leading to (11) now gives as a lower bound to (19) : T
r
(20) 24 g2 g RRLYLELNY

snd there is equality between (19) and (20) 1f and only if (cf. (12))
(21) Pein /e = [a(O/MENM =1 for all k=1, .

This suggests in anslogy with (13) that if a new patient arrives snd falls inte stratum
k, then he is assigned treatment B if and only if

2) o /u, < u(itg‘»:ml(m)n"’




vhere § 1is given in (18). . .

However, there is an additional practical consideration, which is especially im-
portant vhen there are small strata. The model of fixed treatment effect across strats
is somevhat tentative and usually must be checked. To do this requires a minimal
amount of balance in the assignment of treatments in each stratum imdividually., Hence
we modify the sampling rule (22) by choosing some small positive number Vor and use
(22) only if 'knk/('k+nk) 2V It -knkl(-k"-nk) < Vg» Ve make the treatment
assignment in some way that provides for about half of the first bvo patients to re-
ceive one treatment and half the other. Of course, this effects our ability to approx-
imate (21), especially in small strata vhere the threshold Vo ®ay not be exceeded;
but it avoids the disastrous situation where almost all assignments in a small stratum

are to one treatment.

Table 3 reports the results of a Monte Carlo experiment to determine the effects
of stratification together with randomization. The test is defined by the same param—
eters as those in Tables 1 and 2, and hence has essentially the same power function.
There are four strata in the relative sizes 4:3:2:1. The threshold is Vo " 3, and
strict pairwise sampling is used in each stratum until this threshold is reached.
Thereafter a raﬁdonized version of (21) as specified in (17) is used.

The results are more ambiguous than in Table 2. For large |§] stratification
substantially increases the risk to the extent that sequential data dependent allo-
cation seems only slightly better than pairwise sampling. For small |6| there is a
comparatively insignificant increase in risk. Although these results are not sur-
prising qualitatively, and therefore probably persist to some extent under different

TABLE 3
Stratified Data, Randomized Allocation

b=10.8, vy=3, =25 4d=20

.$ s Power 5 Eg(N) E Eg0e) 2 { EgIM X /0L 40)]  Risk

; 113 1.00  17.6 23.8 19.8 439

s .88 .99  22.3 35.1 26.6 449
.57 848  29.2 47.8 35.2 409

.28 .288 40.3 61.1 46.9 7

experimental conditions, the exact magnitude of the changes may well be sensitive to
the number and sisze of the strata, the parameters b, Vor Vs etc. _

A conclusion to be drawn from Tables 2 and 3 is that practical constraints on
using an allocation rule 1ike (13) may reduce the advantage over pairwise allocation

exhibited in Table 1, snd suggest that some study of those constraiaté relevaat to a
9
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particular problem should probably be made i:efore sexiously contemplating use of a
sequential allocation scheme.

Remarks (i). It seems to be an interesting mathematical problem to explain the success
exhibited in Table 1 for the approximations (14) and (15). Heuristic afgunants indi-
cate that these approxinat':lons should be valid to within 0(l) as b+ o®, v+ o

and bv-l + const. But proving this result or, vhat is more interesting, determining
the constant implicit in the O0(l) -may be rather difficult.

(11) A challenging pioblem is to extend Proposition 1 and its consequences to other
situations. An interesting discussion by Jennison, Johnstone, and Turnbull (1981)
shows that the naive generalization to three populations is not valid.
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The work of Flehingher, Louis, Robbins, and Singer (Proc. Mat. Acad.
Sci. U.S.A., 1972), Robbins and Siegmund (JASA, 1974), Louis (Biometrika,
1975), and Hayre (Biometrika, 1979) is reviewed. Variations of the basic

model, including stratification and randomized allocation, are considered,

and the results of some simulations presented.
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